3.250 \(\int (a+b \sec ^2(e+f x))^{3/2} \, dx\)

Optimal. Leaf size=118 \[ \frac{a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}+\frac{b \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f}+\frac{\sqrt{b} (3 a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 f} \]

[Out]

(a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f + (Sqrt[b]*(3*a + b)*ArcTanh[(Sqrt[b
]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + (b*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0920687, antiderivative size = 118, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.438, Rules used = {4128, 416, 523, 217, 206, 377, 203} \[ \frac{a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{f}+\frac{b \tan (e+f x) \sqrt{a+b \tan ^2(e+f x)+b}}{2 f}+\frac{\sqrt{b} (3 a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)+b}}\right )}{2 f} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f + (Sqrt[b]*(3*a + b)*ArcTanh[(Sqrt[b
]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*f) + (b*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*f)

Rule 4128

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist
[ff/f, Subst[Int[(a + b + b*ff^2*x^2)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p},
 x] && NeQ[a + b, 0] && NeQ[p, -1]

Rule 416

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(d*x*(a + b*x^n)^(p + 1)*(c
 + d*x^n)^(q - 1))/(b*(n*(p + q) + 1)), x] + Dist[1/(b*(n*(p + q) + 1)), Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2)
*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /; F
reeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntB
inomialQ[a, b, c, d, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\left (a+b+b x^2\right )^{3/2}}{1+x^2} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac{b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{\operatorname{Subst}\left (\int \frac{(a+b) (2 a+b)+b (3 a+b) x^2}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}+\frac{(b (3 a+b)) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 f}\\ &=\frac{b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}+\frac{a^2 \operatorname{Subst}\left (\int \frac{1}{1+a x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac{(b (3 a+b)) \operatorname{Subst}\left (\int \frac{1}{1-b x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 f}\\ &=\frac{a^{3/2} \tan ^{-1}\left (\frac{\sqrt{a} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac{\sqrt{b} (3 a+b) \tanh ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac{b \tan (e+f x) \sqrt{a+b+b \tan ^2(e+f x)}}{2 f}\\ \end{align*}

Mathematica [C]  time = 2.05414, size = 527, normalized size = 4.47 \[ \frac{\sqrt{2} e^{i (e+f x)} \cos ^3(e+f x) \sqrt{4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \left (\frac{-i a^{3/2} \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b\right )+i a^{3/2} \log \left (\sqrt{a} \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}+a e^{2 i (e+f x)}+a+2 b e^{2 i (e+f x)}\right )+2 a^{3/2} f x-b^{3/2} \log \left (\frac{2 i f \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}-2 \sqrt{b} f \left (-1+e^{2 i (e+f x)}\right )}{b (3 a+b) \left (1+e^{2 i (e+f x)}\right )}\right )-3 a \sqrt{b} \log \left (\frac{2 i f \sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}-2 \sqrt{b} f \left (-1+e^{2 i (e+f x)}\right )}{b (3 a+b) \left (1+e^{2 i (e+f x)}\right )}\right )}{\sqrt{a \left (1+e^{2 i (e+f x)}\right )^2+4 b e^{2 i (e+f x)}}}-\frac{i b \left (-1+e^{2 i (e+f x)}\right )}{\left (1+e^{2 i (e+f x)}\right )^2}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{f (a \cos (2 e+2 f x)+a+2 b)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Sec[e + f*x]^2)^(3/2),x]

[Out]

(Sqrt[2]*E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + f*x))]*Cos[e + f*x]^3*(((-I)
*b*(-1 + E^((2*I)*(e + f*x))))/(1 + E^((2*I)*(e + f*x)))^2 + (2*a^(3/2)*f*x - I*a^(3/2)*Log[a + 2*b + a*E^((2*
I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] + I*a^(3/2)*Log[a + a*E
^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x
)))^2]] - 3*a*Sqrt[b]*Log[(-2*Sqrt[b]*(-1 + E^((2*I)*(e + f*x)))*f + (2*I)*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1
 + E^((2*I)*(e + f*x)))^2]*f)/(b*(3*a + b)*(1 + E^((2*I)*(e + f*x))))] - b^(3/2)*Log[(-2*Sqrt[b]*(-1 + E^((2*I
)*(e + f*x)))*f + (2*I)*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*f)/(b*(3*a + b)*(1 + E^(
(2*I)*(e + f*x))))])/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x]^2)^(3/
2))/(f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))

________________________________________________________________________________________

Maple [C]  time = 0.293, size = 1557, normalized size = 13.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sec(f*x+e)^2)^(3/2),x)

[Out]

1/2/f/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*(6*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2
)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^
(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b
))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b
^(1/2)+a-b)/(a+b))^(1/2))*a*b+2*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/
2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*c
os(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+
e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b)
)^(1/2))*b^2-2*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(
f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+c
os(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*
b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a^2-3*sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*c
os(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1
/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*a
*b-sin(f*x+e)*cos(f*x+e)^2*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1
+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^
(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*
a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*b^2+4*cos(f*x+e)^2*sin(f*x+e)*2^(1/2)*(1/(a+b)*(I*cos(f*x+e)*a^
(1/2)*b^(1/2)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e)))^(1/2)*(-2/(a+b)*(I*cos(f*x+e)*a^(1/2)*b^(1/2)-
I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e)))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/
(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1
/2)*b^(1/2)+a-b)/(a+b))^(1/2))*a^2+cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b-cos(f*x+e)^2*((2*I
*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a*b+cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b^2-((2*I*a^(1/2)*b^
(1/2)+a-b)/(a+b))^(1/2)*b^2)*cos(f*x+e)*((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(3/2)*sin(f*x+e)/(-1+cos(f*x+e))/(b+
a*cos(f*x+e)^2)^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B]  time = 1.77804, size = 3602, normalized size = 30.53 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/8*(sqrt(-a)*a*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a
^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^
2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b +
 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/
cos(f*x + e)^2)*sin(f*x + e)) + (3*a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*
b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/co
s(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x
+ e))/(f*cos(f*x + e)), 1/8*(2*(3*a + b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt
(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) + sqr
t(-a)*a*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*
a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3
)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)
*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x +
 e)^2)*sin(f*x + e)) + 4*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(f*cos(f*x + e)), -1/8*(2
*a^(3/2)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*s
qrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*co
s(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e) - (3*a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x +
e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x +
e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)
^2)*sin(f*x + e))/(f*cos(f*x + e)), -1/4*(a^(3/2)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e
)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x +
e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e) - (3*a + b)*sqrt(-b)*arctan
(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*c
os(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) - 2*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e
))/(f*cos(f*x + e))]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac{3}{2}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)**2)**(3/2),x)

[Out]

Integral((a + b*sec(e + f*x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac{3}{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")

[Out]

integrate((b*sec(f*x + e)^2 + a)^(3/2), x)